MALAYSIAN JOURNAL OF Journal homepage: http://d

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

Journal homepage: http://einspem.upm.edu.my/journal

Weak Continuity Between WSS and GTS due to Császár

^{1*}Ahmad Al-Omari and ²Takashi Noiri

Al al-Bayt University, Faculty of Sciences, Department of Mathematics, P.O. Box 130095, Mafraq 25113, Jordan

2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan

E-mail: omarimutah1@yahoo.com and t.noiri@nifty.com

*Corresponding author

ABSTRACT

In this paper, we define and investigate the notions of weak (μ, w) -continuity and weak (w, μ) -continuity between a weak structure space (Császár (2011)) and a generalized topological space (Császár (2002)). Also, we obtain several characterizations and many properties of these notions.

Keywords: Weak structure, generalized topology, weak (w, μ) -continuity, weak (μ, w) -continuity.

2010 Mathematics Subject Classification: 54A05, 54C10

1. INTRODUCTION AND PRELIMINARIES

Császár (2002) introduced a generalized structure called generalized topology. Recently, Császár (2011) has introduced a new notion of structures called a weak structure which is weaker than both a generalized topology (Császár (2002)) and a minimal structure (Popa and Noiri (2000)). Let X be a nonempty set and $w \subseteq P(X)$, where P(X) is the power set of X. Then w is called a weak structure (briefly WS) on X if $\phi \in w$. A nonempty set X with a weak structure is called a weak structure space (briefly WSS) and is denoted by (X, w). Each member of

w is said to be *w*-open and the complement of a *w*-open set is said to be *w*-closed. Let *w* be a weak structure on *X* and $A \subseteq X$. Császár (2011) defined (as in the general case) $i_w(A)$ as the union of all *w*-open subsets of *A* (e.g. ϕ) and $c_w(A)$ as the intersection of all *w*-closed sets containing *A* (e.g. *X*), for getting a deeper insight into further studying some topological notions of different kinds see Agnello and Cammaroto (1987) for details.

We call a class $\mu \subseteq P(X)$ a generalized topology (Császár (2002)) (briefly GT) if $\phi \in \mu$ and the arbitrary union of elements of μ belongs to μ . A set X with a $GT \ \mu$ on it is called a generalized topological space (briefly GTS) and is denoted by (X,μ) . Quite recently, Al-Omari and Noiri have introduced the notions of (w,k)-continuity and weak (w,k)continuity between weak structure spaces and obtained several characterizations and a number of properties of the notions. In this paper, we define and investigate the notions of weak (μ, w) -continuity and weak (w,μ) -continuity between a weak structure space Császár (2011) and a generalized topological space Császár (2002). Also, we obtain several characterizations and many properties of these notions.

The following lemmas are useful in the sequel:

Lemma 1.1 (Császár (2011)). Let w be a WS on X and A, B subsets of X, then the following properties hold

- 1. $i_w(A) \subseteq A \subseteq c_w(A)$.
- 2. If $A \subseteq B$ implies that $i_w(A) \subseteq i_w(B)$ and $c_w(A) \subseteq c_w(B)$.
- 3. $i_w(i_w(A)) = i_w(A)$ and $c_w(c_w(A)) = c_w(A)$.
- 4. $i_w(X A) = X c_w(A)$ and $c_w(X A) = X i_w(A)$.

Lemma 1.2 (Császár (2011)). Let w be a WS on X and A a subset of X, then the following properties hold

- 1. $x \in i_w(A)$ if and only if there is $W \in w$ such that $x \in W \subseteq A$.
- 2. $x \in c_w(A)$ if and only if $W \cap A \neq \phi$ whenever $x \in W \in w$.
- 3. If $A \in w$, then $A = i_w(A)$ and if A is w-closed, then $A = c_w(A)$.

Remark 1.3 If w is a WS on X, then

- 1. $i_w(\phi) = \phi$ and $c_w(X) = X$.
- 2. $i_w(X)$ is the union of all w-open sets in X.
- 3. $c_w(\phi)$ is the intersection of all w-closed sets in X.

As in (Császár (2008)), let μ be a *GT* on a nonempty set *X* and P(X) the power set of *X*. Let us define the collection $\theta(\mu) \subseteq P(X)$ as follows: $A \in \theta(\mu)$ if and only if for each $x \in A$, there exists $U \in \mu$ such that $x \in U \subseteq c_{\mu}(U) \subseteq A$. Then $\theta(\mu)$ is also a *GT* included in μ . The element of $\theta(\mu)$ is called a $\theta(\mu)$ -open set and the complement is called $\theta(\mu)$ -closed. Let (X, μ) be a *GTS* and $A \subseteq X$. We recall the the notions defined as follows:

- 1. $\gamma_{\theta}(A) = \{x \in X : c_{\mu}(U) \cap A \neq \phi \text{ for all } \mu \text{ -open set } U \text{ containing } x\}.$ (Császár (2002))
- 2. $c_{\theta}(A) = \bigcap \{F \subseteq X : A \subseteq F, F \text{ is } \theta(\mu) \text{ -closed in } X \}$. (Min (2009))
- 3. $i_{\theta}(A) = \bigcup \{ V \subseteq X : V \subseteq A, V \text{ is } \theta(\mu) \text{ open in } X \}$. (Min (2009))
- 4 $\iota_{\theta}(A) = \{x \in X : c_{\mu}(U) \subseteq A \text{ for some } \mu \text{ -open set } U \text{ containing } x\}.$ (Min (2009))

Theorem 1.4 (Császár (2008)). Let (X, μ) be a GTS and $A \subseteq X$. Then the following hold

- 1. $i_{\theta}(A) \subseteq \iota_{\theta}(A) \subseteq i_{\mu}(A) \subseteq A \subseteq c_{\mu}(A) \subseteq \gamma_{\theta}(A) \subseteq c_{\theta}(A)$.
- 2. If A is μ -open, then $c_{\mu}(A) = \gamma_{\theta}(A)$.

Lemma 1.5 Let (X, μ) be a GTS and $A \subseteq X$. Then $\gamma_{\theta}(A)$ is μ -closed.

Proof. Let $x \in X - \gamma_{\theta}(A)$, then $x \notin \gamma_{\theta}(A)$. There exists $U_x \in \mu$ containing x such that $c_{\mu}(U_x) \cap A = \phi$. Then we have $U_x \cap \gamma_{\theta}(A) = \phi$ and hence $x \in U_x \subseteq X - \gamma_{\theta}(A)$ and we have $X - \gamma_{\theta}(A) = \bigcup U_x \in \mu$. Therefore, $\gamma_{\theta}(A)$ is μ -closed.

2. (μ, w) -CONTINUOUS FUNCTIONS

Definition 2.1 Let μ be a GT on X and w be a WS on Y. A function $f:(X,\mu) \to (Y,w)$ is said to be (μ,w) -continuous if for each $x \in X$ and each $V \in w$ containing f(x), there exists $U \in \mu$ containing x such that $f(U) \subseteq V$.

Definition 2.2 (Császár (2008)). Let μ and λ be generalized topologies on X and Y, respectively. A function $f:(X,\mu) \to (Y,\lambda)$ is said to be (μ,λ) -continuous if $f^{-1}(V) \in \mu$ for every $V \in \lambda$.

Definition 2.3 Let w and k be weak structures on X and Y, respectively. A function $f:(X,w) \to (Y,k)$ is said to be (w,k)-continuous if for each $x \in X$ and each $V \in k$ containing f(x), there exists $U \in w$ containing x such that $f(U) \subseteq V$.

Theorem 2.4 Let w and k be weak structures on X and Y, respectively. For a function $f:(X,w) \rightarrow (Y,k)$, the following properties are equivalent:

- 1. f is (w,k)-continuous;
- 2. $f^{-1}(B) = i_w(f^{-1}(B))$ for every *k*-open set *B* in *Y*;
- 3. $f(c_w(A)) \subseteq c_k(f(A))$ for every subset A in X;
- 4. $c_w(f^{-1}(B)) \subseteq f^{-1}(c_k(B))$ for every subset B in Y;
- 5. $f^{-1}(i_k(B)) \subseteq i_w(f^{-1}(B))$ for every subset B in Y;
- 6. $c_w(f^{-1}(K)) = f^{-1}(K)$ for every k-closed set K in Y.

Theorem 2.5 Let μ be a GT on X and w be a WS on Y. For a function $f:(X,\mu) \rightarrow (Y,w)$, the following properties are equivalent:

- 1. f is (μ, w) -continuous;
- 2. $f^{-1}(B)$ is μ -open in X for every w-open set B in Y;
- 3. $f(c_{\mu}(A)) \subseteq c_{\nu}(f(A))$ for every subset A in X;
- 4. $c_{\mu}(f^{-1}(B)) \subseteq f^{-1}(c_{\nu}(B))$ for every subset B in Y;
- 5. $f^{-1}(i_w(B)) \subseteq i_u(f^{-1}(B))$ for every subset B in Y;
- 6. $f^{-1}(K)$ is μ -closed in X for every w-closed set K in Y.

Proof. This follows from Theorem 2.4 and the fact that A is μ -open if and only if $A = i_{\mu}(A)$ for $A \subseteq X$.

Let w be a WS on X and $w^* = \{A \subset X : A = i_w(A)\}$, then it is shown that

- 1. w^* is a *GT* containing w;
- 2. *w* is a *GT* if and only if $w = w^*$.

Theorem 2.6 Let μ be a GT on X and w be a WS on Y. For a function $f:(X,\mu) \rightarrow (Y,w)$, the following properties are equivalent:

- 1. f is (μ, w) -continuous;
- 2. for each $x \in X$ and each $V \in w^*$ containing f(x), there exists $U \in \mu$ containing x such that $f(U) \subseteq V$;
- 3. $f:(X,\mu) \to (Y,w^*)$ is (μ,w^*) -continuous (in the sense of Császár (2002)).

Proof. (1) \Rightarrow (2). Let $x \in X$ and $V \in w^*$ containing f(x). Since $V \in w^*$, then $V = i_w(V)$ and $f(x) \in i_w(V)$. By Lemma 1.2, there exists $W \in w$ such that $f(x) \in W \subseteq V$. By (1), there exists $U \in \mu$ containing x such that $f(U) \subseteq W \subseteq V$.

(2) \Rightarrow (3). Suppose that $V \in w^*$. Let $x \in f^{-1}(V)$, then $f(x) \in V = i_w(V)$. By Lemma 1.2, there exists $W \in w \subseteq w^*$ such that $f(x) \in W \subseteq V$. Then by (2) there exists $U_x \in \mu$ containing x such that $f(U_x) \subseteq W \subseteq V$. Hence $x \in U_x \subseteq f^{-1}(V)$ and hence $f^{-1}(V) = \bigcup \{U_x : x \in f^{-1}(V)\} \in \mu$. Therefore, $f: (X, \mu) \to (Y, w^*)$ is (μ, w^*) -continuous.

(3) \Rightarrow (1). Let $x \in X$ and each V be a w-open set containing f(x). Since $w \subseteq w^*$, by (3) $x \in f^{-1}(V) \in \mu$. Thus there exists $U = f^{-1}(V) \in \mu$ containing x such that $f(U) \subseteq V$. Therefore, f is (μ, w) -continuous.

3. WEAKLY (μ, w) -CONTINUOUS FUNCTIONS

Definition 3.1 Let μ be a GT on X and w be a WS on Y. A function $f:(X,\mu) \to (Y,w)$ is said to be weakly (μ,w) -continuous at $x \in X$ if for each $V \in w$ containing f(x), there exists $U \in \mu$ containing x such that $f(U) \subseteq c_w(V)$. A function $f:(X,\mu) \to (Y,w)$ is said to be weakly (μ,w) -continuous if it has the property at each point $x \in X$.

Example 3.2 Let $X = \{a, b, c, d\}$. Consider the generalized topology $\mu = \{\phi, \{a\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and a weak structure $w = \{\phi, \{a, c\}, \{b, c\}\}$ on *X*. Define $f : (X, \mu) \rightarrow (Y, w)$ as follows

$$f(\{a\}) = b, f(\{b\}) = f(\{d\}) = d, f(\{c\}) = c.$$

Then since $c_w(\{a,c\}) = c_w(\{b,c\}) = X$ it is obvious that f is weakly (μ, w) -continuous. But f is not (μ, w) -continuous.

Definition 3.3 Let X be a nonempty set which has a weak structure w and A a subset of X. The w-frontier of A, denoted by w - Fr(A), is defined by w - Fr(A) = $c_w(A) \cap c_w(X - A) = c_w(A) - i_w(A)$.

Definition 3.4 Let μ be a GT on X and w be a WS on Y. A function $f:(X,\mu) \rightarrow (Y,w)$ is said to be weakly (μ,w) -continuous if $f^{-1}(w - Fr(V))$ is μ -closed in X for each w-open set V of Y.

By the two examples stated below, we show that weakly (μ, w) -continuous and weakly (μ, w) -continuous are independent of each other.

Example 3.5 Let $X = \{a, b, c, d\}$. Consider the generalized topology $\mu = \{\phi, \{a\}, \{a, c\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}, X\}$ and a weak structure $w = \{\phi, \{a, c\}, \{b, c\}\}$ on X. Define $f : (X, \mu) \to (X, w)$ as follows: $f(\{a\}) = b$, $f(\{b\}) = f(\{d\}) = d$, $f(\{c\}) = c$. Then, since $c_w(\{a, c\}) = c_w(\{b, c\}) = X$ it is obvious that f is weakly (μ, w) - continuous. But f is not weakly^{*} (μ, w) -continuous.

Malaysian Journal of Mathematical Sciences

302

Example 3.6 Let $X = \{a, b, c, d\}$. Consider the generalized topology $\mu = \{\phi, \{b, c, d\}\}$ and a weak structure $w = \{\phi, \{a, c\}, \{d\}\}$ on X. Define $f:(X, \mu) \rightarrow (Y, w)$ as follows: $f(\{a\}) = b$, $f(\{b\}) = f(\{d\}) = d$, $f(\{c\}) = c$. Then since $w - Fr(\{a, c\}) = w - Fr(\{d\}) = \{b\}$ it is obvious that f is weakly^{*} (μ, w) -continuous. But f is not weakly (μ, w) -continuous.

Theorem 3.7 Let μ be a GT on X and w be a WS on Y. If a function $f:(X,\mu) \rightarrow (Y,w)$ is (μ,w) -continuous, then it is weakly (μ,w) - continuous and weakly^{*} (μ,w) -continuous. The converse is true if μ is a topology.

Proof. Suppose that f is (μ, w) -continuous. It is obvious that f is weakly (μ, w) -continuous. We show that f is weakly $^{*}(\mu, w)$ -continuous. Let V be a w-open set. Since

$$w - Fr(V) = c_w(V) \cap c_w(X - V) = c_w(V) \cap (X - V),$$

$$f^{-1}(w - Fr(V)) = f^{-1}(c_w(V)) \cap f^{-1}(X - V) \text{ and}$$

$$f^{-1}(c_w(V)) = f^{-1}(\cap\{(Y - G) : G \in w, V \subseteq (Y - G)\})$$

$$= \cap\{f^{-1}(Y - G) : G \in w, V \subseteq (Y - G)\}.$$

Since f is (μ, w) -continuous and $G \in w$, $f^{-1}(Y - G)$ is μ -closed in (X, μ) and hence $f^{-1}(c_w(V))$ is μ -closed in (X, μ) . On the other hand, $f^{-1}(X - V)$ is μ -closed in (X, μ) and hence $f^{-1}(w - Fr(V))$ μ -closed in (X, μ) . This shows that f is weakly^{*} (μ, w) -continuous.

Conversely, suppose that μ is a topology. Let $x \in X$ and V be a w-open set containing f(x). Then $f(x) \notin w - Fr(V)$. Since f is weakly (μ, w) -continuous, there exists a μ -open set G containing x such that $f(G) \subseteq c_w(V)$. Put $U = G \cap (X - f^{-1}(w - Fr(V)))$. Then U is a μ -open set of X containing x and

$$f(U) \subseteq f(G) \cap (Y - w - Fr(V)) \subseteq c_w(V) \cap (Y - w - Fr(V)) = V.$$

This shows that f is (μ, w) -continuous.

Theorem 3.8 Let μ be a GT on X and w be a WS on Y. A function $f:(X,\mu) \to (Y,w)$ is weakly (μ,w) -continuous at x if and only if for each w open set V containing f(x), $x \in i_{\mu}(f^{-1}(c_w(V)))$.

Proof. Let f be weakly (μ, w) -continuous at x and V a w -open set containing f(x). Then, there exists a μ -open set U containing x such that $f(U) \subseteq c_w(V)$. Then we have $x \in U \subseteq f^{-1}(c_w(V))$ and hence $x \in i_\mu(f^{-1}(c_w(V)))$.

Conversely, let V be a w-open set containing f(x). Then, we have $x \in i_{\mu}(f^{-1}(c_w(V)))$. There exists a μ -open set U such that $x \in U$ and $U \subseteq f^{-1}(c_w(V))$, hence $f(U) \subseteq c_w(V)$. This shows that f is weakly (μ, w) -continuous at x.

Theorem 3.9 Let μ be a GT on X and w be a WS on Y. A function $f:(X,\mu) \to (Y,w)$ is weakly (μ,w) -continuous if and only if $f^{-1}(V) \subseteq i_{\mu}(f^{-1}(c_w(V)))$ for every w-open set V of Y.

Proof. Suppose that f is weakly (μ, w) -continuous. Let $x \in f^{-1}(V)$, then $f(x) \in V$. Since f is weakly (μ, w) -continuous at x, by Theorem 3.8 we have $x \in i_{\mu}(f^{-1}(c_w(V)))$ and hence $f^{-1}(V) \subseteq i_{\mu}(f^{-1}(c_w(V)))$.

Conversely, let x be any point of X and $V \in \mu$ containing f(x). Then, we have $x \in f^{-1}(V) \subseteq i_{\mu}(f^{-1}(c_w(V)))$. By Theorem 3.8, f is weakly (μ, w) -continuous.

We will denote by M_{μ} the union of all μ -open sets in a GTS (X, μ) .

Definition 3.10 A GTS (X, μ) (resp. WSS (X, w)) is said to be μ connected (Omari and Noiri (2012)) (resp. w-connected) if M_{μ} (resp. X) cannot be expressed as the union of two disjoint non-empty μ -open (resp. w-open) subsets of X.

Theorem 3.11 Let μ be a GT on X and w be a WS on Y. Let $f:(X,\mu) \to (Y,w)$ be a weakly (μ,w) -continuous surjection. If (X,μ) is μ -connected, then (Y,w) is w -connected.

Proof. Let $f:(X,\mu) \to (Y,w)$ be a weakly (μ,w) -continuous function of a μ -connected space (X,μ) onto (Y,w). If possible, let Y be w - disconnected. Let V_1 and V_2 form a disconnection of Y. Then V_1 and V_2 are w -open and $Y = V_1 \cup V_2$ where $V_1 \cap V_2 = \phi$. Since V_i is w -open, V_i is w -closed in (Y,w) for each i = 1,2. Therefore, by Theorem 3.9 we obtain $f^{-1}(V_i) \subseteq i_{\mu}(f^{-1}(c_w(V_i))) = i_{\mu}(f^{-1}(V_i))$ for i = 1,2 and hence $f^{-1}(V_i)$ is μ - open for each i = 1,2.

Moreover, $M_{\mu} = f^{-1}(Y) = f^{-1}(V_1 \cup V_2) = f^{-1}(V_1) \cup f^{-1}(V_2)$, where $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are non-empty μ -open sets in X. Also $f^{-1}(V_1) \cap f^{-1}(V_2) = \phi$. Hence, X is not μ -connected. This is a contradiction. Therefore, (Y, w) is w-connected.

Corollary 3.12 Let μ be a GT on X and w be a WS on Y. Let $f:(X,\mu) \rightarrow (Y,w)$ be a (μ,w) -continuous surjection. If (X,μ) is μ -connected, then (Y,w) is w-connected.

4. WEAKLY (w, μ) -CONTINUOUS FUNCTIONS

Definition 4.1 A function $f:(X,w) \to (Y,\mu)$, where (X,w) is a WSS and (Y,μ) is a GTS, is said to be weakly (w,μ) -continuous if for each $x \in X$ and each $V \in \mu$ containing f(x), there exists $U \in w$ containing x such that $f(U) \subseteq c_u(V)$.

Throughout the present section, (X, w) (resp. (Y, μ)) denotes a WSS (resp. *GTS*).

Theorem 4.2 For a function $f:(X,w) \rightarrow (Y,\mu)$, the following properties are equivalent:

- 1. *f* is weakly (w, μ) -continuous;
- 2. $f^{-1}(V) \subseteq i_w(f^{-1}(c_\mu(V)))$ for every μ -open subset V of Y;
- 3. $c_w(f^{-1}(i_\mu(A))) \subseteq f^{-1}(A)$ for every μ -closed set A of Y;
- 4. $c_w(f^{-1}(i_\mu(c_\mu(B)))) \subseteq f^{-1}(c_\mu(B))$ for every set *B* of *Y*;
- 5. $f^{-1}(i_{\mu}(B)) \subseteq i_{w}(f^{-1}(c_{\mu}(i_{\mu}(B))))$ for every set *B* of *Y*;
- 6. $c_w(f^{-1}(V)) \subseteq f^{-1}(c_u(V))$ for every μ -open subset V of Y.

Proof. (1) \Rightarrow (2). Let *V* be a μ -open subset of *Y* and $x \in f^{-1}(V)$. There exists a *w*-open set *U* containing *x* such that $f(U) \subseteq c_{\mu}(V)$. Since $x \in U \subseteq f^{-1}(c_{\mu}(V))$, it follows that $x \in i_{w}(f^{-1}(c_{\mu}(V)))$. Hence $f^{-1}(V) \subseteq i_{w}(f^{-1}(c_{\mu}(V)))$.

(2) \Rightarrow (3). Let *A* be any μ -closed subset of *Y*. Then *Y* - *A* is μ -open in *Y* and by (2) $f^{-1}(Y-A) \subseteq i_w(f^{-1}(c_\mu(Y-A))) = i_w(f^{-1}(Y-i_\mu(A))) = X - c_w(f^{-1}(i_\mu(A))).$ Therefore, we obtain $c_w(f^{-1}(i_\mu(A))) \subseteq f^{-1}(A).$

(3) \Rightarrow (4). Let *B* be a subset of *Y*. Since $c_{\mu}(B)$ is μ -closed in *Y*, by (3) it follows that $c_w(f^{-1}(i_{\mu}(c_{\mu}(B)))) \subseteq f^{-1}(c_{\mu}(B))$.

(4)
$$\Rightarrow$$
 (5). Let *B* be a subset of *Y*. Form (4), it follows
 $f^{-1}(i_{\mu}(B)) = X - f^{-1}(c_{\mu}(Y - B)) \subseteq X - c_{w}(f^{-1}(i_{\mu}(c_{\mu}(Y - B))))$
 $= i_{w}(f^{-1}(c_{\mu}(i_{\mu}(B)))).$

Therefore, we obtain $f^{-1}(i_{\mu}(B)) \subseteq i_{w}(f^{-1}(c_{\mu}(i_{\mu}(B)))).$

(5) \Rightarrow (6). Let V be any μ -open subset of Y. Suppose $x \notin f^{-1}(c_{\mu}(V))$. Then $f(x) \notin c_{\mu}(V)$ and hence there exists a μ -open set U containing f(x) such that $U \cap V = \phi$ and hence $c_{\mu}(U) \cap V = \phi$. By (5), $x \in f^{-1}(U) \subseteq i_w(f^{-1}(c_{\mu}(U)))$ and hence there exists a w-open set G containing x such that $x \in G \subseteq f^{-1}(c_{\mu}(U))$. Since $c_{\mu}(U) \cap V = \phi$ and

 $f(G) \subseteq c_{\mu}(U)$, we have $G \cap f^{-1}(V) = \phi$ and hence $x \notin c_{w}(f^{-1}(V))$. Hence $c_{w}(f^{-1}(V)) \subseteq f^{-1}(c_{\mu}(V))$.

(6)
$$\Rightarrow$$
 (1). Let $x \in X$ and $V \in \mu$ containing $f(x)$. From (6),
 $x \in f^{-1}(V) \subseteq f^{-1}(i_{\mu}(c_{\mu}(V))) = X - f^{-1}(c_{\mu}(Y - c_{\mu}(V)))$
 $\subseteq X - c_{w}(f^{-1}(Y - c_{\mu}(V))) = i_{w}(f^{-1}(c_{\mu}(V))).$

So there exists a *w*-open subset *U* containing *x* in *X* such that $U \subseteq f^{-1}(c_{\mu}(V))$. Hence $f(U) \subseteq c_{\mu}(V)$ and *f* is weakly (w, μ) - continuous.

Theorem 4.3 Let $f:(X,w) \to (Y,\mu)$ be a function. The set of all points $x \in X$ at which f is not weakly (w,μ) -continuous is identical with the union of w-frontier of the inverse images of the μ -closure of μ -open sets containing f(x).

Proof. Suppose that f is not weakly (w, μ) -continuous at $x \in X$. There exists a μ -open sets V of Y containing f(x) such that f(U) is not contained in $c_{\mu}(V)$ for every $U \in w$ containing x. Then $U \cap (X - f^{-1}(c_{\mu}(V))) \neq \phi$ for every $U \in w$ containing x and hence $x \in c_w(X - f^{-1}(c_{\mu}(V)))$. On the other hand, we have $x \in f^{-1}(V) \subseteq c_w(f^{-1}(c_{\mu}(V)))$ and hence $x \in w - Fr(f^{-1}(c_{\mu}(V)))$.

Conversely, suppose that f is weakly (μ, w) -continuous at $x \in X$ and let V be any μ -open set of Y containing f(x). Then, by Theorem 4.2 we have $x \in f^{-1}(V) \subseteq i_w(f^{-1}(c_\mu(V)))$. Therefore,

 $x \notin w$ - $Fr(f^{-1}(c_{\mu}(V)))$ for each μ -open set V of Y containing f(x). This completes the proof.

Definition 4.4 Császár (2002). Let w be a WS on X and $A \subseteq X$. Then

- 1. $A \in \alpha(w)$ if $A \subseteq i_w(c_w(i_w(A)))$.
- 2. $A \in \sigma(w)$ if $A \subseteq c_w(i_w(A))$.

- 3. $A \in \pi(w)$ if $A \subseteq i_w(c_w(A))$.
- 4. $A \in \beta(w)$ if $A \subseteq c_w(i_w(c_w(A)))$.

Lemma 4.5 Császár (2002). If w is a WS, we have

- 1. $w \subseteq \alpha(w) \subseteq \sigma(w) \subseteq \beta(w)$.
- 2. $w \subseteq \alpha(w) \subseteq \pi(w) \subseteq \beta(w)$.
- 3. each of $\alpha(w)$, $\pi(w)$, $\sigma(w)$ and $\beta(w)$ is a generalized topology.

Remark 4.6 Definition 4.4 and Lemma 4.5, in case $w = \mu$ (generalized topology), are found in the paper (Császár (2002)) due to Császár.

Definition 4.7 Ekici (2012). Let w be a WS on X and $A \subseteq X$. Then

- 1. $A \in r(w)$ if $A = i_w(c_w(A))$.
- 2. $A \in rc(w)$ if $A = c_w(i_w(A))$.

Theorem 4.8 Ekici (2012). The following properties are equivalent for a WS w on X and $A \subseteq X$.

- 1. $A \in \beta(w)$.
- 2. there exists $B \in \pi(w)$ such that $B \subseteq c_w(A) \subseteq c_w(B)$.
- 3. $c_w(A) \in rc(w)$.

Definition 4.9 Let μ be a GT on X and $A \subseteq X$. Then

- 1. $A \in r(\mu)$ if $A = i_{\mu}(c_{\mu}(A))$.
- 2. $A \in rc(\mu)$ if $A = c_{\mu}(i_{\mu}(A))$.

Corollary 4.10 The following properties are equivalent for a GT μ on X and $A \subseteq X$.

- 1. $A \in \beta(\mu)$,
- 2. there exists $B \in \pi(\mu)$ such that $B \subseteq c_{\mu}(A) \subseteq c_{\mu}(B)$,
- 3. $c_{\mu}(A) \in rc(\mu)$.

Malaysian Journal of Mathematical Sciences

308

Lemma 4.11 If w is a WS, then $w \subseteq w^* \subseteq \alpha(w)$.

Theorem 4.12 For a function $f : (X, w) \rightarrow (Y, \mu)$, the following properties are equivalent:

- 1. f is weakly (w, μ) -continuous;
- 2. $c_w(f^{-1}(i_\mu(A))) \subseteq f^{-1}(A)$ for every $A \in rc(\mu)$;
- 3. $c_w(f^{-1}(i_u(c_u(G)))) \subseteq f^{-1}(c_u(G))$ for every $G \in \beta(\mu)$;
- 4. $c_w(f^{-1}(i_u(c_u(G)))) \subseteq f^{-1}(c_u(G))$ for every $G \in \sigma(\mu)$.

Proof. (1) \Rightarrow (2). Let $A \in rc(\mu)$. Since $i_{\mu}(A) \in \mu$, by Theorem 4.2 (6) and $A \in rc(\mu)$, $c_w(f^{-1}(i_{\mu}(A))) \subseteq f^{-1}(c_{\mu}(i_{\mu}(A))) = f^{-1}(A)$.

(2) \Rightarrow (3). Let $G \in \beta(\mu)$ then by Corollary 4.10, $c_{\mu}(G) \in rc(\mu)$. Form (2), it follows $c_{w}(f^{-1}(i_{\mu}(c_{\mu}(G)))) \subseteq f^{-1}(c_{\mu}(G))$.

(3) \Rightarrow (4). Since $\sigma(\mu) \subseteq \beta(\mu)$, the proof is obvious.

(4) \Rightarrow (1). Let $V \in \mu$. Then since $\mu \subseteq \sigma(\mu)$, by (4) $c_w(f^{-1}(V)) \subseteq c_w(f^{-1}(i_\mu(c_\mu(V)))) \subseteq f^{-1}(c_\mu(V))$. Hence by Theorem 4.2 (6), f is weakly (w, μ) -continuous.

Theorem 4.13 For a function $f:(X,w) \rightarrow (Y,\mu)$, the following properties are equivalent:

- 1. *f* is weakly (w, μ) -continuous;
- 2. $c_w(f^{-1}(i_\mu(c_\mu(G)))) \subseteq f^{-1}(c_\mu(G))$ for every $G \in \pi(\mu)$;
- 3. $c_w(f^{-1}(G)) \subseteq f^{-1}(c_u(G))$ for every $G \in \pi(\mu)$;
- 4. $f^{-1}(G) \subseteq i_w(f^{-1}(c_u(G)))$ for every $G \in \pi(\mu)$.

Proof. (1) \Rightarrow (2). Let $G \in \pi(\mu)$. Then $c_{\mu}(G) = c_{\mu}(i_{\mu}(c_{\mu}(G)))$ and $c_{\mu}(G) \in rc(\mu)$.

Form Theorem 4.12, it follows that $c_w(f^{-1}(i_\mu(c_\mu(G)))) \subseteq f^{-1}(c_\mu(G))$.

(2) \Rightarrow (3). The proof is obvious.

(3) \Rightarrow (4). Let $G \in \pi(\mu)$. Then it follows from (3) that

$$f^{-1}(G) \subseteq f^{-1}(i_{\mu}(c_{\mu}(G))) = X - f^{-1}(c_{\mu}(Y - c_{\mu}(G)))$$
$$\subseteq X - c_{\nu}(f^{-1}(Y - c_{\mu}(G))) = i_{\nu}(f^{-1}(c_{\mu}(G))).$$

Hence we have (4).

(4) \Rightarrow (1). Since $\mu \subseteq \pi(\mu)$, from (4) and Theorem 4.2, it follows that weakly (w, μ) -continuous.

Theorem 4.14 For a function $f : (X, w) \rightarrow (Y, \mu)$, the following properties are equivalent:

1. f is weakly (w, μ) -continuous; 2. $c_w(f^{-1}(i_\mu(\gamma_\theta(B)))) \subseteq f^{-1}(\gamma_\theta(B))$ for every subset B of Y; 3. $c_w(f^{-1}(i_\mu(c_\mu(B)))) \subseteq f^{-1}(\gamma_\theta(B))$ for every subset B of Y; 4. $c_w(f^{-1}(i_\mu(c_\mu(G)))) \subseteq f^{-1}(c_\mu(G))$ for every μ -open set G of Y; 5. $c_w(f^{-1}(i_\mu(c_\mu(V)))) \subseteq f^{-1}(c_\mu(V))$ for every $V \in \pi(\mu)$; 6. $c_w(f^{-1}(i_\mu(C_\mu(G)))) \subseteq f^{-1}(K)$ for every $K \in rc(\mu)$; 7. $c_w(f^{-1}(i_\mu(c_\mu(G)))) \subseteq f^{-1}(c_\mu(G))$ for every $G \in \beta(\mu)$; 8. $c_w(f^{-1}(i_\mu(c_\mu(G)))) \subseteq f^{-1}(c_\mu(G))$ for every $G \in \sigma(\mu)$; 9. $f(c_w(A)) \subseteq \gamma_\theta(f(A))$ for every subset A of X; 10. $c_w(f^{-1}(B)) \subseteq f^{-1}(\gamma_\theta(B))$ for every subset B of Y.

Proof. (1) \Rightarrow (2). Let *B* be any subset of *Y*. Then by Lemma 1.5 $\gamma_{\theta}(B)$ is μ -closed in *Y*. Then by Theorem 4.2 $c_w(f^{-1}(i_{\mu}(\gamma_{\theta}(B)))) \subseteq f^{-1}(\gamma_{\theta}(B))$.

(2) \Rightarrow (3). This is obvious since $c_{\mu}(B) \subseteq \gamma_{\theta}(B)$ for every subset B.

(3) \Rightarrow (4). This is obvious since $c_{\mu}(G) = \gamma_{\theta}(G)$ for every μ -open set G.

(4) \Rightarrow (5). Let $V \in \pi(\mu)$. Then we have $V \subseteq i_{\mu}(c_{\mu}(V))$ and

Malaysian Journal of Mathematical Sciences

310

 $c_{\mu}(V) = c_{\mu}(i_{\mu}(c_{\mu}(V)))$. Now, set $G = i_{\mu}(c_{\mu}(V))$ then G is μ -open in Y and $c_{\mu}(V) = c_{\mu}(G)$.

Therefore, by (4) we have $c_w(f^{-1}(i_\mu(c_\mu(V)))) \subseteq f^{-1}(c_\mu(V))$.

(5) \Rightarrow (6). Let $K \in rc(\mu)$. Then we have $i_{\mu}(K) \in \pi(\mu)$ and hence by (5) $c_{\nu}(f^{-1}(i_{\mu}(K))) = c_{\nu}(f^{-1}(i_{\mu}(c_{\mu}(i_{\mu}(K))))) \subseteq f^{-1}(c_{\mu}(i_{\mu}(K))) = f^{-1}(K).$

(6) \Rightarrow (7). Let $G \in \beta(\mu)$. Then $G \subseteq c_{\mu}(i_{\mu}(c_{\mu}(G)))$. Since $c_{\mu}(G) \in rc(\mu)$, by (6) $c_{w}(f^{-1}(i_{\mu}(c_{\mu}(G)))) \subseteq f^{-1}(c_{\mu}(G))$.

(7) \Rightarrow (8). This is obvious since $\sigma(\mu) \subseteq \beta(\mu)$.

(8) \Rightarrow (1). Let V be any μ -open set of Y. Then, by (8) we have $c_w(f^{-1}(V)) \subseteq c_w(f^{-1}(i_\mu(c_\mu(V)))) \subseteq f^{-1}(c_\mu(V))$. It follows from Theorem 4.2 that f is weakly (w, μ) -continuous.

(1) \Rightarrow (9). Let *A* be any subset of *X*. Let $x \in c_w(A)$ and *V* be any μ -open set of *Y* containing f(x). There exists $U \in w$ containing *x* such that $f(U) \subseteq c_\mu(V)$. Since $x \in c_w(A)$, then we have $U \cap A \neq \phi$ and hence $\phi \neq f(U) \cap f(A) \subseteq c_\mu(V) \cap f(A)$. Therefore, we have $f(x) \in \gamma_\theta(f(A))$ and hence $f(c_w(A)) \subseteq \gamma_\theta(f(A))$.

(9) \Rightarrow (10). Let *B* be any subset of *Y*. By (9), we have $f(c_w(f^{-1}(B))) \subseteq \gamma_\theta(f(f^{-1}(B))) \subseteq \gamma_\theta(B)$ and hence $c_w(f^{-1}(B)) \subseteq f^{-1}(\gamma_\theta(B))$.

(10) \Rightarrow (1). Let *B* be any subset of *Y*. By (10), we have $c_w(f^{-1}(i_\mu(c_\mu(B)))) \subseteq f^{-1}(\gamma_\theta(i_\mu(c_\mu(B)))) = f^{-1}(c_\mu(i_\mu(c_\mu(B)))) \subseteq f^{-1}(c_\mu(B)).$

It follows from Theorem 4.2 that f is weakly (w, μ) -continuous.

CONCLUSION

In this paper, we obtained many characterizations of the following functions:

- 1. a (w,k)-continuous function $f:(X,w) \to (Y,k)$, where w and k are weak structures,
- 2. a (μ, k) -continuous function $f: (X, \mu) \to (Y, w)$, where μ is a generalized topology and w is a weak structure,
- 3. a weakly (μ, w) -continuous function $f: (X, \mu) \to (Y, w)$, where μ is a generalized topology and w is a weak structure,
- 4. a weakly (w, μ) -continuous function $f: (X, w) \to (Y, \mu)$, where *w* is a weak structure and μ is a generalized topology.

ACKNOWLEDGEMENT

The authors wish to thank the referee for useful comments and suggestions.

REFERENCES

- Agnello, M. and Cammaroto, F. 1987. Sul prolungamento di funzioni quasi-continue mediante. *Ric. Mat. Univ. Napoli.* **36**(2): 183-196.
- Al-Omari, A. and Noiri, T. 2012. A unified theory of contra- (μ, λ) continuous functions in generalized topological spaces. *Acta Math. Hungar*.**135** (1-2): 31-41.
- Cammaroto, F. and Noiri, T. 1990. On the δ -continuous fixed point property. *Int. J. Math. Math. Sci.* **13**(1): 45-50.
- Császár, Á. 2002. Generalized topology, generalized continuity. *Acta Math. Hungar.* **96**: 351-357.
- Császár, Á. 2005. Generalized open sets in generalized topologies. *Acta Math. Hungar.* **106**: (1-2): 53-66.
- Császár, Á. 2008. δ and θ -modification of generalized topologies. *Acta Math. Hungar.* **120** (8): 275-279.

Császár, Á. 2011. Weak structures. Acta Math. Hungar. 131:193-195.

- Ekici, E. 2012. On weak structures due to Császár. Acta Math. Hungar. 134(4): 565-570.
- Maki, H., Umehara, J. and Noiri, T. 1996. Every topological space is pre- T_1 . *Mem. Fac. Sci. Kochi. Univ. Ser. A Math.* 17: 33-42.
- Min, W. K. 2009. A note on $\theta(g,g')$ -continuity generalized topological spaces. *Acta Math. Hungar.* **125**(4): 389-393.
- Popa, V. and Noiri, T. 2000. On *M*-continuous functions. Anal. Univ. "Dunarea de Jos" Galati. *Ser. Mat. Fiz. Mec. Teor., Fasc. II.* **18**(23): 31-41.